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Soil moisture plays an essential role in the energy and mass balance between the land and atmosphere by
influencing agriculture, hydrology, and climate. The present study evaluates the performance of four soil
moisture products-AMSR-2, MERRA-2, SMAP, and SMOS—against in-situ soil moisture data provided by
the Soil Moisture Indian Network at the Pune station from 2016 to 2020. The comparison statistics indicate
that AMSR-2 has the least correlation, whereas MERRA-2 exhibits the highest correlation (R = 0.91), followed
closely by SMAP (R = 0.89) and SMOS (R = 0.87). SMOS and SMAP achieved the lowest RMSE (13.6 mm³/
mm³ and 14.0 mm³/mm³, respectively), while AMSR-2 had the most significant errors. Bias adjustment methods
were applied to each satellite product to determine the best-fitting technique. It was observed that different
satellites require different approaches to suit them well. The study supports the use of soil moisture estimation
products from MERRA-2, SMAP and SMOS for regional applications.
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ABSTRACT

Introduction
Soil moisture is one of the critical variables in the

hydrological cycle, influencing land–atmosphere
interactions, agricultural productivity, and weather and
climate systems. It governs the sectionalization of rainfall
into infiltration and runoff, affects evapotranspiration
rates, and plays a key role in drought and flood forecasting
(Entekhabi et al., 2010 and Kerr et al., 2012). Accurate
soil moisture information is essential for improving
agricultural water management, climate modelling, and
early warning systems for hydrological hazards (Brocca
et al., 2010).

In-situ soil moisture monitoring delivers precise and
continuous ground-based observations. However,
measuring soil moisture on the ground is often a costly
process and is spatially limited. On the contrary, the
remote sensing method of dataset assimilation can
overcome these limitations by consistently offering soil
moisture for a large area at regular intervals. Among the
prominent satellite and reanalysis sources are the
Advanced Microwave Scanning Radiometer 2 (AMSR-

2), the Soil Moisture Active Passive (SMAP) mission,
the Soil Moisture and Ocean Salinity (SMOS) satellite,
and the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2) dataset (Reichle
et al., 2004; Njoku et al., 2005; Kerr et al., 2010).

Site-specific validation of these products becomes
crucial due to the dependency of soil moisture on local
conditions such as climatic regime, vegetation cover, and
soil type, which leads to variability in accuracy. For a
data-scarce region like India, it becomes increasingly
crucial to validate these global products for planning at
the regional level (Dorigo et al., 2015; Srivastava,
Petropoulos and Kerr, 2016).

This study aims to evaluate the consistency and
accuracy of AMSR-2, SMAP, SMOS, and MERRA-2
soil moisture products against COSMOS observations at
the Pune site over 5 years (2016–2020). In addition to
standard statistical measures such as Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), bias,
and Pearson correlation, we apply six regression models—
linear, exponential, logarithmic, polynomial, power and
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quantile regression—to determine the best-fitting
relationships. The study not only contributes to the
validation of satellite products against in situ data but also
provides insights into the correction of data to best fit
ground data for greater accuracy and reliability.

Materials and Methods
Study area

Pune station is geographically situated at 18.32° N
latitude and 73.48° E longitude at approximately 560m of
elevation above mean sea level. It is located in a semi-
arid agroclimatic zone in India. Pune experiences a
tropical wet and dry climate (Köppen: Aw), with distinct
wet (monsoon) and dry seasons. The average annual
rainfall ranges from 700 to 800 mm. The summer season
(March to May) sees a gradual increase in temperature,
whereas the winter season (November to February) is
typically dry and cool. The study area at the station
features a soil type of sandy clay loam, characterized by
a moderate water-holding capacity and variable infiltration
rates.
Data used

The present study utilizes in-situ soil moisture and
remotely sensed soil moisture by satellite/reanalysed data
products collected from 2016 to 2020. The combination
of both types of datasets enables a comprehensive
assessment of the behaviour of moisture products at the
Pune Station.
In-situ data – COSMOS Probe (SMIN)

Soil Moisture Indian Network (SMIN)—an initiative
by Indian scientific agencies to establish long-term
monitoring of soil moisture using advanced technologies.

Among the eight stations, Pune station plays a vital role
in this network, representing the semi-arid climatic zone
and contributing high-quality data for research and
validation studies.

The in-situ data used in this study were obtained
from the COSMOS (Cosmic Ray Soil Moisture Observing
System) probe installed at Pune as part of the Soil
Moisture Indian Network (SMIN). This sensor measures
neutron flux in the lower atmosphere, which is inversely
related to soil moisture content within a radius of
approximately 150–200 meters, covering an area of
around 20 hectares.

The COSMOS probe provides daily average
volumetric soil moisture values (in mm³/mm³), with a
representative sensing depth of ~0–20 cm, depending on
soil type and moisture conditions. The data span from
January 2016 to December 2020. These measurements
are considered ground truth due to their established
reliability, spatial representativeness, and calibration to
site-specific soil conditions.
Satellite and Reanalysis Soil Moisture products

To study the performance of different remotely
sensed soil moisture products available, we have employed
the following widely used satellite and reanalysed datasets.
These datasets differ in spatial resolution, temporal
frequency and sensing technique. Table 1 contains
information regarding the soil moisture products used in
the present study.
Methodology

This section outlines the approach used to evaluate
the performance of satellite and reanalysis soil moisture
products relative to in-situ COSMOS observations at

Table 1 : Details of Remote Sensing Soil Moisture data.

Parameter AMSR-2 SMAP SMOS MERRA-2

Sensor Type Passive microwave L-band radiometer L-band radiometer Reanalysis product
(active component
disabled post-2015)

Resolution ~25 km ~9 km ~40 km 0.5° × 0.625°
Temporal Frequency 3-hourly 2–3 days revisit 2–3 days revisit Daily

(aggregated to daily)
Source JAXA (Japan NASA ESA NASA’s Global

Aerospace Exploration (European Space Modeling and
Agency) Agency) Assimilation Office

(GMAO)
Notes Limited accuracy in Designed for topsoil Uses synthetic Integrates satellite

vegetated and semi-arid moisture estimation; aperture; suitable data into land-surface
regions due to coarse reliable in low- for large-scale models; spatially
resolution and surface vegetation areas moisture variability continuous and

emissivity effects consistent over time
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Pune station. Satellite data were reprojected and extracted
at the COSMOS station’s geographic coordinates. For
meaningful comparison, only days with soil moisture
values available from both the COSMOS station and each
satellite product were considered. This step ensured
temporal consistency and allowed for unbiased statistical
comparisons. The number of paired observations (n) for
each dataset is shown in Fig. 1. The methodology includes
data pairing, statistical performance assessment,
regression modelling, and visualization techniques. A
flowchart explains the work process (Fig. 2).
Statistical Performance Metrics

To assess how closely satellite soil moisture data
match the in-situ COSMOS observations, the following
performance metrics were computed (Table 2). These
metrics collectively provide insight into the precision,
accuracy, and consistency of each dataset.

Regression Model Fitting
To better understand the relationship between

satellite-derived soil moisture estimates and in-situ
observations from the COSMOS probe, six distinct
regression models were employed: Linear, Exponential,
Logarithmic, Polynomial, Power and Quantile regression.
Each model has a different ability to read various aspects,
including linearity, curvature, multiplicative effects, and
distributional asymmetries. The motive of applying multiple
regression types is to know the best mathematical
formulation that defines the relationship between the two
datasets and helps in removing the bias value from the

Fig. 1 : Number of paired observations.

Fig. 2 : Flow chart of methodology adopted for the study.

Table 2 : Statistical parameters used for comparison.

Metrics Formula Description

Mean Absolute Measures the average
Error (MAE) magnitude of error without

considering direction.

Root Mean Emphasizes larger errors more
Square Error than MAE due to the

(RMSE) squaring operation.

Bias Indicates systematic overestimation
(positive) or underestimation

(negative).

Pearson Measures linear relationship
Correlation between satellite and

Coefficient (R) in-situ observations.
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read dataset.
Linear Regression : Linear regression assumes a

direct relation between insitu (observed) and satellite
(estimated) soil moisture. It is one of the most widely
used models due to its interpretability and simplicity.

Exponential Regression : Exponential models
capture multiplicative growth, where small changes in
input (in-situ data) can lead to significant changes in
output. The model may be suitable for areas where the
dynamics of soil moisture are governed by rapid influx,
such as drying or wetting events, where data displays
exponential decay or rise. The method is advantageous
in areas with well-drained soil with non-linear responses.

Logarithmic Regression : Logarithmic models are
suitable when the relationship increases rapidly at low
values and levels off at higher values. The model implies
diminishing returns with increasing soil moisture, as seen
in saturated soils where supplementary moisture does
not significantly change radiometric signals. This method
is helpful for lands with vegetative cover and clay-rich
soil.

Polynomial Regression (2nd Degree) : This
model extends linear regression by introducing curvature,
capturing relationships that are parabolic due to factors
such as heterogeneous soil profiles, sensor sensitivity, or
vegetation interference. It allows for different rates of
change at low vs. high moisture values and is more flexible
than simple linear forms

Power Regression : This model assumes a
multiplicative, scale-invariant relationship. It is commonly
used in geophysics and environmental sciences where
variables are related through power laws, particularly
when both low and high ranges are important.

Quantile Regression : Unlike ordinary least
squares, which estimates the mean response, quantile
regression estimates conditional quantiles (e.g., median,
25th or 75th percentile). It is robust to non-normality,
skewness and outliers, which are frequent in
environmental datasets. Especially useful for
understanding performance at extremes (like droughts
or floods). For example, quantile regression can show
whether a satellite underestimates soil moisture during
very dry or wet periods, supporting bias correction efforts.

Results and Discussion
Time Series analysis

Fig. 3 illustrates the daily time series comparison
between in-situ soil moisture (dotted line) and the four
satellite products (continuous line). A seasonal trend is
evident in all datasets, with increased moisture during

the monsoon periods (JuneSeptember) and lower values
during the pre-monsoon season (MarchMay). MERRA-
2 shows strong temporal coherence with the COSMOS
data, closely matching seasonal amplitude and peak timing.
SMAP and SMOS also follow the seasonal dynamics,
though their magnitude is slightly lower during peak
monsoon, consistent with the observed negative bias.
AMSR-2 diverges the most, with both a noticeable lag
and underestimation during key seasonal peaks. The time
series plot supports the hypothesis that satellite and
reanalysis products, especially SMAP, SMOS and
MERRA-2, are capable of capturing the temporal
evolution of soil moisture but require localized calibration
for amplitude correction.
Overview of Satellite Product performance

The accuracy and reliability of satellite- and
reanalysis-based soil moisture products were assessed
by comparing them with in-situ measurements from the
COSMOS station located in Pune. Four datasets were
evaluated: AMSR-2, MERRA-2, SMAP, and SMOS. The
evaluation period spanned from 2016 to 2020, during
which statistical performance metrics, including MAE,
RMSE, bias and Pearson correlation coefficient (R), were
computed and evaluated (Fig. 4).

MERRA 2 showed a strong linear relationship with
in-situ COSMOS data, with the highest correlation
coefficient (R = 0.91) among the four satellite datasets.
With R values of 0.89 and 0.87, respectively, SMAP and
SMOS closely trailed behind, while AMSR-2 showed the
lowest correlation (0.65). In terms of RMSE, SMOS
exhibited the lowest error at 13.55 mm³/mm³, followed
by SMAP (13.98 mm³/mm³) and MERRA-2 (15.19 mm³/
mm³). AMSR-2 again performed poorly, with the highest
RMSE of 22.49 mm³/mm³, indicating a substantial
deviation from the observed soil moisture values. The
MAE followed a similar trend, confirming these insights.
Bias analysis revealed that AMSR-2 and MERRA-2
tended to overestimate soil moisture, whereas SMAP and
SMOS exhibited a slight underestimation of soil moisture.
This has practical implications: while the magnitude of
errors was lower for SMAP and SMOS, the sign of the
bias needs to be considered for operational purposes.

The Taylor diagram (Fig. 5) provides a comprehensive
statistical comparison of COSMOS in-situ observations
and soil moisture products derived from satellites. The
centred root mean square difference, standard deviation,
and correlation coefficient are all shown at the same time.
SMAP, SMOS, and MERRA-2 exhibit comparable
variability and high correlation with the reference,
indicating good agreement among the evaluated products.
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AMSR, on the other hand, underestimates variability and
shows less correlation. The relative performance of each
satellite dataset is clearly illustrated in the diagram (Fig.

Fig. 3 : Time series graph at Pune station.

Fig. 4 : Performance Metrics for Pune Station.

Fig. 5 : Taylor Diagram-based evaluation of Satellite Soil
Moisture Accuracy.

Fig. 6 : Correlation Coefficients (R) for Regression Models.

5), where the radial distance represents the
standard deviation and the angle from the
horizontal axis represents the correlation
coefficient. The star-marked value is the centred
root mean square difference of the in situ dataset.
Regression Model performance

To better understand the functional
relationship between in-situ and satellite-based soil
moisture, six regression models were fitted for
each dataset: Linear, Exponential, Logarithmic,
Polynomial, Power and Quantile regression. The
correlation coefficients (R) obtained from these
models are summarized in Fig. 6.

Polynomial and quantile regression models
consistently produced the highest correlation

values across most datasets. For SMAP and SMOS,
polynomial regression (second degree) achieved R-
squared values of 0.894 and 0.879, respectively,
highlighting their non-linear relationships with the
COSMOS data. This suggests that a quadratic correction
function may be helpful for local calibration of satellite
products.

Firm performance was found for AMSR 2 using
quantile regression (R = 0.951), suggesting that this
approach is more sensitive to outliers and better able to
manage the extremes of soil moisture variability. Despite
its poor performance under conventional models, AMSR
2's high quantile regression fit raises the possibility that it
could be beneficial in some hydrologically extreme
situations, such as post-monsoon saturation or drought.
On the other hand, logarithmic regression performed the
worst for all products, suggesting that log-linear models
do not adequately capture soil moisture dynamics at this
location, perhaps due to their asymptotic behaviour.
Strengths of SMAP, SMOS and MERRA-2

The overall performance of SMAP and SMOS
reflects their advanced sensor technology (L-band
radiometers), which are less affected by vegetation and
surface roughness. Their relatively higher spatial
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resolution (940 km) also contributes to improved accuracy
at the Pune site. The integration of various observation
types and model physics is advantageous for MERRA 2,
as it is a product of reanalysis. Particularly in situations
where in-situ data are limited, MERRA-2's strong
correlation and reliable performance imply that it can be
used as a reference dataset for regional hydrological
studies.

Conclusion
This study conducted a comprehensive comparison

between in-situ soil moisture observations from the
COSMOS probe at Pune station and four satellite- or
reanalysis-based soil moisture datasets: AMSR-2, SMAP,
SMOS and MERRA-2, over the 20162020 period. The
aim was to evaluate their accuracy, understand functional
relationships and identify suitable models for bias
correction or data integration in hydrological studies.

Statistical analyses showed that MERRA-2 emerged
as the most consistent and accurate product, exhibiting
the highest Pearson correlation coefficient (R = 0.91),
moderate RMSE (15.19 mm³/mm³), and a manageable
positive bias (+10.51 mm³/mm³). SMAP and SMOS
followed closely, with strong correlations (0.89 and 0.87,
respectively) and the lowest RMSE values (~13.5 mm³/
mm³). However, both showed a slight underestimation
of soil moisture compared to COSMOS data. In contrast,
AMSR-2 underperformed, with a lower correlation (R =
0.65), the highest RMSE (22.49 mm³/mm³) and a
significant positive bias, which limits its reliability at this
site.

In addition to standard statistical metrics, the study
applied six different regression modelsLinear, Exponential,
Logarithmic, Polynomial, Power, and Quantileto capture
the underlying relationships between in-situ and satellite
observations. Polynomial and Quantile regressions
consistently provided better fits, especially for MERRA-
2 and SMAP data. Quantile regression was particularly
valuable in capturing tail behaviour, such as extreme wet
or dry periods. It significantly improved the correlation
for AMSR-2 (R = 0.951), suggesting it may still offer
valuable information under specific conditions.

Despite being site-specific, this study demonstrates
the critical value of ground validation, particularly through
advanced ground instruments like COSMOS, in assessing
the accuracy and applicability of global soil moisture
products.

Future work should include spatial expansion to
multiple stations across different climatic and land-cover
zones in India, as well as seasonal performance analysis
and the incorporation of advanced modelling techniques,
such as machine learning or hybrid regression, to further
improve downscaling and correction of satellite-derived
soil moisture.

In summary, this work not only identifies the best-
performing satellite products for Pune but also advances
the methodological approach to soil moisture validation
through the use of regression modelling. This study adds
depth to the global effort of enhancing satellite remote
sensing accuracy for local-scale hydrological applications.
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